Weak Copositive and Intertwining Approximation

Y. K. Hu
Georgia Southern University
K. A. Kopotun
Vanderbilt University
and
X. M. Yu
Southwest Missouri State University
Communicated by Dany Leviatan

Received March 20, 1997; accepted in revised form December 8, 1997

It is known that shape preserving approximation has lower rates than unconstrained approximation. This is especially true for copositive and intertwining approximations. For $f \in \mathbf{L}_{p}, 1 \leqslant p<\infty$, the former only has rate $\omega_{\varphi}\left(f, n^{-1}\right)_{p}$, and the latter cannot even be bounded by $C\|f\|_{p}$. In this paper, we discuss various ways to relax the restrictions in these approximations and conclude that the most sensible way is the so-called almost copositive/intertwining approximation in which one relaxes the restriction on the approximants in a neighborhood of radius $\Delta_{n}\left(y_{j}\right)$ of each sign change y_{j}.
© 1999 Academic Press
Key Words: constrained approximation; almost copositive approximation; almost intertwining approximation; polynomials; splines; degree of approximation; Sobolev space.

1. INTRODUCTION

Let $\mathbf{C}[a, b]$ and $\mathbf{C}^{k}[a, b]$ be the sets of all continuous and all k-times continuously differentiable functions on $[a, b]$, respectively, and let $\mathbf{L}_{p}[a, b]$, $0<p<\infty$, be the set of measurable functions on $[a, b]$ such that $\|f\|_{\mathbf{L}_{p}[a, b]}$ $<\infty$, where

$$
\|f\|_{\mathbf{L}_{p}[a, b]}:=\left\{\int_{a}^{b}|f(x)|^{p} d x\right\}^{1 / p} .
$$

213

Throughout this paper $\mathbf{L}_{\infty}[a, b]$ is understood as $\mathbf{C}[a, b]$ with the usual uniform norm, to simplify the notation, and $1 \leqslant p \leqslant \infty$ is always assumed unless otherwise indicated. We also denote by $\mathbf{W}_{p}^{k}[a, b]$ the Sobolev space, the set of all functions f on $[a, b]$ such that f^{k-1} are absolutely continuous and $f^{(k)} \in \mathbf{L}_{p}$, and by \mathbf{P}_{n} the set of all polynomials of degree $\leqslant n$.

Let us recall some definitions of moduli of smoothness used throughout this paper. The m th symmetric difference of f is given by

$$
\begin{aligned}
& \Delta_{h}^{m}(f, x,[a, b]) \\
& \qquad:= \begin{cases}\sum_{i=0}^{m}\binom{m}{i}(-1)^{m-i} f\left(x-\frac{m h}{2}+i h\right), & \text { if } x \pm \frac{m h}{2} \in[a, b], \\
0, & \text { otherwise. }\end{cases}
\end{aligned}
$$

Then the m th (usual) modulus of smoothness of $f \in \mathbf{L}_{p}[a, b]$ is defined by

$$
\omega^{m}(f, t,[a, b])_{p}:=\sup _{0 \leqslant h \leqslant t}\left\|\Delta_{h}^{m}(f, \cdot,[a, b])\right\|_{\mathbf{L}_{p}[a, b]}
$$

We shall also use the so-called τ-modulus, or Sendov-Popov modulus, an averaged modulus of smoothness, defined for all bounded measurable functions on [a, b] by

$$
\tau^{m}(f, t,[a, b])_{p}:=\left\|\omega^{m}(f, \cdot, t)\right\|_{\mathbf{L}_{p}[a, b]},
$$

where

$$
\omega^{m}(f, x, t):=\sup \left\{\left|\Delta_{h}^{m}(f, y)\right|: y \pm m h / 2 \in[x-m t / 2, x+m t / 2] \cap[a, b]\right\}
$$

is the m th local modulus of smoothness of f. (We set $\tau^{m}(f, t,[a, b])_{p}:=\infty$ if the function f is unbounded.) If the interval $[-1,1]$ is used in any of the above notations, it will be omitted for the sake of simplicity, for example,

$$
\|f\|_{p}:=\|f\|_{\mathbf{L}_{p}[-1,1]}, \quad \omega^{m}(f, t)_{p}:=\omega^{m}(f, t,[-1,1])_{p}
$$

The ω - and τ-moduli measure the smoothness of f over the interval uniformly. The "non-uniform" modulus that we use is the m th Ditzian-Totik modulus of smoothness, defined for $f \in \mathbf{L}_{p}[-1,1]$ by

$$
\omega_{\varphi}^{m}(f, t)_{p}:=\sup _{0 \leqslant h \leqslant t}\left\|\Delta_{h \varphi(\cdot)}^{m}(f, \cdot,[-1,1])\right\|_{p}
$$

with $\varphi(x):=\sqrt{1-x^{2}}$. Let $\Delta_{n}(x):=n^{-1} \sqrt{1-x^{2}}+n^{-2}$. The term of $\omega^{m}\left(f, \Delta_{n}(x)\right)_{\infty}$ is also used in this paper.

Let $Y_{s}:=\left\{y_{1}, \ldots, y_{s}: y_{0}:=-1<y_{1}<y_{2}<\cdots<y_{s}<1=: y_{s+1}\right\}, \quad s \geqslant 0$. We denote by $\Delta^{0}\left(Y_{s}\right)$ the set of all functions f such that $(-1)^{s-j} f(x) \geqslant 0$
for $x \in\left[y_{j}, y_{j+1}\right], k=0, \ldots, s$, i.e., those that have $0 \leqslant s<\infty$ sign changes at the points in Y_{s} and are nonnegative near 1. In particular, $\Delta^{0}:=\Delta^{0}\left(Y_{0}\right)$ denotes the set of all nonnegative functions on $[-1,1]$. Functions f and g which belong to the same class $\Delta^{0}\left(Y_{s}\right)$ are said to be copositive on $[-1,1]$. Copositive approximation is the approximation of functions f from $\Delta^{0}\left(Y_{s}\right)$ class by polynomials or splines that are copositive with f. For $f \in \mathbf{L}_{p}[-1,1]$ let

$$
E_{n}(f)_{p}:=\inf _{P_{n} \in \mathbf{P}_{n}}\left\|f-P_{n}\right\|_{p}
$$

denote the degree of unconstrained approximation, and let

$$
E_{n}^{(0)}\left(f, Y_{s}\right)_{p}:=\inf _{P_{n} \in \mathbf{P}_{n} \cap \Delta^{0}\left(Y_{s}\right)}\left\|f-P_{n}\right\|_{p}
$$

be the degree of copositive polynomial approximation of f. In particular,

$$
E_{n}^{(0)}(f)_{p}:=E_{n}^{(0)}\left(f, Y_{0}\right)_{p}:=\inf _{P_{n} \in \mathbf{P}_{n} \cap \Delta^{0}}\left\|f-P_{n}\right\|_{p}
$$

is the degree of positive approximation. The degree of intertwining polynomial approximation of functions $f \in \mathbf{L}_{p}[-1,1]$ with respect to Y_{s} is given by

$$
\widetilde{E}_{n}\left(f, Y_{s}\right)_{p}:=\inf \left\{\|P-Q\|_{p}: P, Q \in \mathbf{P}_{n}, P-f \in \Delta^{0}\left(Y_{s}\right) \text { and } f-Q \in \Delta^{0}\left(Y_{s}\right)\right\} .
$$

We call $\{P, Q\}$ an intertwining pair of polynomials for f with respect to Y_{s} if $P-f, f-Q \in \Delta^{0}\left(Y_{s}\right)$. In particular, when $s=0, \widetilde{E}_{n}\left(f, Y_{0}\right)_{p}=\widetilde{E}_{n}(f)_{p}$ is the degree of one-sided polynomial approximation of f.

While intertwining approximation was introduced by the authors [10] not long ago, positive, copositive, and one-sided approximations have been studied extensively in recent years.

Some main results are summarized in Tables I-III. (See [9-10] and the references therein.) From these tables we see the degrees are astonishingly low in $\mathbf{L}_{p}, p<\infty$. As an extreme, the degree of intertwining approximation is not even bounded by $\|f\|_{p}$ or $\tau(f, 1)_{p}$. Recently, Leviatian and Shevchuk [20] obtained higher degree of comonotone approximation in $\mathbf{C}[-1,1]$ by relaxing the restriction in a neighborhood of radius $\Delta_{n}\left(y_{j}\right)$ of each sign change y_{j}. Inspired by their idea, we discuss in this paper various ways to relax the restrictions in copositive and intertwining approximations and conclude that the most sensible way is the so-called almost copositive/ intertwining approximation, in which one gives up the "right" amount of restriction in change for higher degrees than those in Tables I-III. All these are defined in Section 2 and summarized in Section 3.

TABLE I
Positive Approximation

$p=\infty$	
$f \in \mathbf{C}$	$\begin{gathered} \exists P_{n}, P_{n}(x) \geq 0, \text { such that } \\ \left\|f(x)-P_{n}(x)\right\| \leq C \omega^{m}\left(f, \Delta_{n}(x)\right)_{\infty} \end{gathered}$
$1 \leq p<\infty$	
$f \in \mathbf{L}_{p}$	$E_{n}^{(0)}(f)_{p} \leq C \tau^{m}\left(f, n^{-1}\right)_{p}$
	$E_{n}^{(0)}(f)_{p} \leq C \omega_{\varphi}\left(f, n^{-1}\right)_{p}$
	$E_{n}^{(0)}(f)_{p} \nsubseteq C \omega^{2}(f, 1)_{p}$
$f \in \mathbf{W}_{p}^{1}$	$E_{n}^{(0)}(f)_{p} \leq C n^{-1} E_{n-1}\left(f^{\prime}\right)_{p}$

TABLE II
Copositive Approximation

$p=\infty$	
$f \in \mathrm{C}$	$E_{n}^{(0)}\left(f, Y_{s}\right)_{\infty} \leq C \omega_{\varphi}^{3}\left(f, n^{-1}\right)_{\infty}$
	$\exists P_{n}$, copositive with f, such that $\left\|f(x)-P_{n}(x)\right\| \leq C \omega^{3}\left(f, \Delta_{n}(x)\right)_{\infty}$
	$E_{n}^{(0)}\left(f, Y_{s}\right)_{\infty} \nsubseteq C \omega^{4}\left(f, n^{-1}\right)_{\infty}$
$f \in \mathrm{C}^{1}$	$E_{n}^{(0)}\left(f, Y_{s}\right)_{\infty} \leq C n^{-1} \omega_{\varphi}^{m}\left(f^{\prime}, n^{-1}\right)_{\infty}$
	$\exists P_{n}$, copositive with f, such that $\left\|f(x)-P_{n}(x)\right\| \leq C \Delta_{n}(x) \omega^{m}\left(f^{\prime}, \Delta_{n}(x)\right)_{\infty}$
$1 \leq p<\infty$	
$f \in \mathbf{L}_{p}$	$E_{n}^{(0)}\left(f, Y_{s}\right)_{p} \leq C \tau^{3}\left(f, n^{-1}\right)_{p}$
	$E_{n}^{(0)}\left(f, Y_{s}\right)_{p} \leq C \omega_{\varphi}\left(f, n^{-1}\right)_{p}$
	$E_{n}^{(0)}\left(f, Y_{s}\right)_{p} \not \subset C \omega^{2}(f, 1)_{p}$
	$E_{n}^{(0)}\left(f, Y_{s}\right)_{p} \nsubseteq C \tau^{4}(f, 1)_{p}$
$f \in \mathbf{W}_{p}^{1}$	$E_{n}^{(0)}\left(f, Y_{s}\right)_{p} \leq C n^{-1} \omega_{\varphi}^{2}\left(f^{\prime}, n^{-1}\right)_{p}$
	$E_{n}^{(0)}\left(f, Y_{s}\right)_{p} \leq C n^{-1} \tau^{m}\left(f^{\prime}, n^{-1}\right)_{p}$
	$E_{n}^{(0)}\left(f, Y_{s}\right)_{p} \nsubseteq C \omega^{3}\left(f^{\prime}, 1\right)_{p}$
$f \in \mathbf{W}_{p}^{2}$	$E_{n}^{(0)}\left(f, Y_{s}\right)_{p} \leq C n^{-2} \omega_{\varphi}^{m}\left(f^{\prime \prime}, n^{-1}\right)_{p}$

TABLE III
Intertwining Approximation

$p=\infty$				
$f \in \mathrm{C}$	$\widetilde{E}_{n}\left(f, Y_{s}\right)_{\infty} \nless C\\| \\| f \\|_{\infty}$			
$f \in \mathbf{C}^{1}$	$\widetilde{E}_{n}\left(f, Y_{s}\right)_{\infty} \leq C n^{-1} \omega_{\varphi}^{m}\left(f^{\prime}, n^{-1}\right)_{\infty}$			
	\exists an intertwining pair $\left\{P_{n}, Q_{n}\right\}$ for f satisfying $\left\|P_{n}(x)-Q_{n}(x)\right\| \leq C \Delta_{n}(x) \omega^{m}\left(f^{\prime}, \Delta_{n}(x)\right)_{\infty}$			
$1 \leq p<\infty$				
$f \in \mathrm{~L}_{p}$	$\widetilde{E}_{n}\left(f, Y_{s}\right)_{p} \nless C\\|f\\|_{p}$			
	$E_{n}\left(f, Y_{s}\right)_{p} \nsubseteq C \tau(f, 1)_{p}$			
$f \in \mathbf{W}_{p}^{1}$	$E_{n}\left(f, Y_{s}\right)_{p} \nless C\left\\|f^{\prime}\right\\|_{p}$			
	$E_{n}\left(f, Y_{s}\right)_{p} \leq C n^{-1} \tau^{m}\left(f^{\prime}, n^{-1}\right)_{p}$			
$f \in \mathbf{W}_{p}^{2}$	$\widetilde{E}_{n}\left(f, Y_{s}\right)_{p} \leq C n^{-2} \omega_{\varphi}^{m}\left(f^{\prime \prime}, n^{-1}\right)_{p}$			

2. NOTATIONS AND DEFINITIONS

We denote $J_{j}(n, \varepsilon):=\left[y_{j}-\Delta_{n}\left(y_{j}\right) n^{\varepsilon}, y_{j}+\Delta_{n}\left(y_{j}\right) n^{\varepsilon}\right] \cap[-1,1], j=0,1, \ldots$, $s+1$, and denote $O_{n}\left(Y_{s}, \varepsilon\right):=\bigcup_{j=1}^{s} J_{j}(n, \varepsilon)$ and $O_{n}^{*}\left(Y_{s}, \varepsilon\right):=\bigcup_{j=0}^{s+1} J_{j}(n, \varepsilon)$. If $\varepsilon=0$, we shall also use the simpler notation $J_{j}:=J_{j}(n, 0), O_{n}\left(Y_{s}\right):=$ $O_{n}\left(Y_{s}, 0\right)$, and $O_{n}^{*}\left(Y_{s}\right):=O_{n}^{*}\left(Y_{s}, 0\right)$. Functions f and g are said to be copositive on $J \subset I:=[-1,1]$ if $f(x) g(x) \geqslant 0, \forall x \in J$. Functions f and g are called almost copositive on I with respect to Y_{s} if they are copositive on $I \backslash O_{n}^{*}\left(Y_{s}\right)$. We say that f and g are strongly (weakly) almost copositive on I with respect to Y_{s} if they are copositive on $I \backslash O_{n}^{*}\left(Y_{s}, \varepsilon\right)$, where $\varepsilon<0(\varepsilon>0)$. In particular, if $\varepsilon=-\infty$, then strongly almost copositive functions are just copositive. We define a function class

$$
(\varepsilon-\operatorname{alm} \Delta)_{n}^{0}\left(Y_{s}\right):=\left\{f:(-1)^{s-k} f(x) \geqslant 0 \text { for } x \in I \backslash O_{n}^{*}\left(Y_{s}, \varepsilon\right)\right\} .
$$

If $s=0$, it becomes

$$
\begin{aligned}
(\varepsilon-\operatorname{alm} \Delta)_{n}^{0} & :=(\varepsilon-\operatorname{alm} \Delta)_{n}^{0}\left(Y_{0}\right) \\
& :=\left\{f: f(x) \geqslant 0 \text { for } x \in\left[-1+n^{-2+\varepsilon}, 1-n^{-2+\varepsilon}\right]\right\}
\end{aligned}
$$

the set of all strongly (weakly) almost nonnegative functions on I if $\varepsilon<0$ $(\varepsilon>0)$. Again, if $\varepsilon=0$, we omit the letter ε in the notation and use $(\operatorname{alm} \Delta)_{n}^{0}\left(Y_{s}\right)$ and $(\operatorname{alm} \Delta)_{n}^{0}$. The latter is the set of almost nonnegative function on I. If $\varepsilon=-\infty$, strongly almost nonnegative functions are just nonnegative.

Definition. The degree of almost positive polynomial approximation of $f \in \mathbf{L}_{p}[-1,1]$ is

$$
E_{n}^{(0)}\left(f, \operatorname{alm} Y_{0}\right)_{p}:=\inf \left\{\|f-P\|_{p}: P \in \mathbf{P}_{n} \cap(\operatorname{alm} \Delta)_{n}^{0}\right\}
$$

Similarly, we define $E_{n}^{(0)}\left(f, \varepsilon \text {-alm } Y_{0}\right)_{p}$, the degree of strongly (weakly) almost positive polynomial approximation of $f \in \mathbf{L}_{p}[-1,1]$, by means of $P \in \mathbf{P}_{n} \cap(\varepsilon \text {-alm } \Delta)_{n}^{0}$.

Definition. The degree of almost copositive polynomial approximation of $f \in \mathbf{L}_{p}[-1,1] \cap \Delta^{0}\left(Y_{s}\right)$ is

$$
E_{n}^{(0)}\left(f, \operatorname{alm} Y_{s}\right)_{p}:=\inf \left\{\|f-P\|_{p}: P \in \mathbf{P}_{n} \cap(\operatorname{alm} \Delta)_{n}^{0}\left(Y_{s}\right)\right\} .
$$

Similarly, we define $E_{n}^{(0)}\left(f, \varepsilon \text {-alm } Y_{s}\right)_{p}$, the degree of strongly (weakly) almost copositive polynomial approximation of $f \in \mathbf{L}_{p}[-1,1] \cap \Delta^{0}\left(Y_{s}\right)$, by means of $P \in \mathbf{P}_{n} \cap(\varepsilon \text {-alm } \Delta)_{n}^{0}\left(Y_{s}\right)$.

Definition. The degree of almost intertwining polynomial approximation of $f \in \mathbf{L}_{p}[-1,1]$ with respect to Y_{s} is

$$
\begin{aligned}
& \widetilde{E}_{n}\left(f, \operatorname{alm} Y_{s}\right)_{p} \\
& :=\inf \left\{\|P-f\|_{p}+\|f-Q\|_{p}: P, Q \in \mathbf{P}_{n},(-1)^{s-j}(P(x)-f(x)) \geqslant 0\right. \\
& \quad \text { and }(-1)^{s-j}(f(x)-Q(x)) \geqslant 0 \\
& \left.\quad \text { if } x \in\left[y_{j}, y_{j+1}\right] \backslash O_{n}\left(Y_{s}\right), j=0, \ldots, s\right\} .
\end{aligned}
$$

We call $\{P, Q\}$ an almost intertwining pair of polynomials for f with respect to Y_{s} if P and Q satisfy the restrictions in the above infimum.

Note. We do not use $\|P-Q\|_{p}$ in the definition since $f(x)$ does not have to be between $P(x)$ and $Q(x)$ when x is close to y_{j}.

Definition. The degree of nearly intertwining polynomial approximation of $f \in \mathbf{L}_{p}[-1,1]$ with respect to Y_{s} is
$\widetilde{E}_{n}\left(f \text {, nearly } Y_{s}\right)_{p}$

$$
\begin{aligned}
:= & \left\{\|P-Q\|_{p}: P, Q \in \mathbf{P}_{n}, P-f \in \Delta^{0}\left(\tilde{Y}_{s}\right) \text { and } f-Q \in \Delta^{0}\left(\tilde{Y}_{s}\right),\right. \\
& \text { where } \tilde{Y}_{s}=\left\{\tilde{y}_{1}, \ldots, \tilde{y}_{s}: \tilde{y}_{0}:=-1<\tilde{y}_{1}<\cdots<\tilde{y}_{s}<1:=\tilde{y}_{s+1}\right\}, \\
& \text { and } \left.\left|\tilde{y}_{j}-y_{j}\right| \leqslant \Delta_{n}\left(y_{j}\right) \text { for } j=1,2, \ldots, s\right\} .
\end{aligned}
$$

We call $\{P, Q\}$ a nearly intertwining pair of polynomials for f with respect to Y_{s} if $P-f, f-Q \in \Delta^{0}\left(\widetilde{Y}_{s}\right)$.

Remark. We have the following relationships among the above quantities:

$$
\tilde{E}_{n}\left(f, \operatorname{alm} Y_{s}\right)_{p} \leqslant \widetilde{E}_{n}\left(f, \text { nearly } Y_{s}\right)_{p} \leqslant \widetilde{E}_{n}\left(f, Y_{s}\right)_{p}
$$

and for $f \in \Delta^{0}\left(Y_{s}\right)$,

$$
E_{n}^{(0)}\left(f, \operatorname{alm} Y_{s}\right)_{p} \leqslant \widetilde{E}_{n}\left(f, \operatorname{alm} Y_{s}\right)_{p}
$$

and

$$
E_{n}^{(0)}\left(f, \operatorname{alm} Y_{s}\right)_{p} \leqslant E_{n}^{(0)}\left(f, Y_{s}\right)_{p}
$$

3. MAIN RESULTS

We summarize all the results in this paper in Tables IV-VII. Compared with Tables I-III we see significant improvements made by switching from positive/copositive/intertwining approximations to almost positive/copositive/ intertwining approximations, due to relaxing restrictions in a neighborhood of radius $\Delta_{n}\left(y_{j}\right)$ of each y_{j}. For example, almost positive approximation improves to the order of $\omega_{\varphi}^{2}\left(f, n^{-1}\right)_{p}$ from $\omega_{\varphi}\left(f, n^{-1}\right)_{p}$ for $1 \leqslant p<\infty$. Almost intertwining approximation also achieves a better order of $\omega_{\varphi}^{m}\left(f, n^{-1}\right)_{\infty}$ or $\omega^{m}\left(f, \Delta_{n}(x)\right)_{\infty}$ in \mathbf{C}, and the order of $\tau^{m}\left(f, n^{-1}\right)_{p}$ in \mathbf{L}_{p}, $1 \leqslant p<\infty$, although it still fails to reach the order of $\|f\|_{p}$ for $1 \leqslant p<\infty$, (for example, $f(x):=0$, if $x \neq 0$, and $f(0):=1$, and 0 is "far from" the set Y_{s}). Nearly intertwining approximation, in which the intertwining points are allowed to shift by an amount no larger than $\Delta_{n}\left(y_{j}\right)$ (using \widetilde{Y}_{s} instead of Y_{s}), improves to the order of $n^{-1} \omega_{\varphi}^{m}\left(f^{\prime}, n^{-1}\right)_{p}$ from $n^{-1} \tau^{m}\left(f^{\prime}, n^{-1}\right)_{p}$ for $f \in \mathbf{W}_{p}^{1}$. Unfortunately, it shows no improvements in \mathbf{L}_{p}. We emphasize that all rates we obtain in this paper are exact in the sense that one can not raise the order of the modulus used in the upper bound.

At the same time, we find that strongly almost positive/copositive approximations, in which restrictions are relaxed in intervals smaller than $\left[y_{j}-\Delta_{n}\left(y_{j}\right), y_{j}+\Delta_{n}\left(y_{j}\right)\right]$, do not do better than the ordinary positive/ copositive approximations; while weakly almost positive/copositive approximations, in which restrictions are relaxed in intervals larger than $\left[y_{j}-\Delta_{n}\left(y_{j}\right)\right.$, $\left.y_{j}+\Delta_{n}\left(y_{j}\right)\right]$, fail to bring a further improvement to the approximation order. In this sense, the "almost" version $(\varepsilon=0)$ is the most sensible weak version.

TABLE IV
Weak Positive Approximation of $f \in \mathbf{L}_{p}, 1 \leqslant p<\infty$

$\varepsilon=0$: Almost Positive Approximation	
$E_{n}^{(0)}\left(f, \operatorname{alm} Y_{0}\right)_{p} \leq C \omega_{\varphi}^{2}\left(f, n^{-1}\right)_{p}$	Theorem 1
$E_{n}^{(0)}\left(f, \operatorname{alm} Y_{0}\right)_{p} \nless C \omega^{3}(f, 1)_{p}$	Theorem 1
$\varepsilon<0$: Strongly Almost Positive Approximation	
$E_{n}^{(0)}\left(f, \varepsilon \text {-alm } Y_{0}\right)_{p} \leq C \omega_{\varphi}\left(f, n^{-1}\right)_{p}$	follows from positive approximation
$E_{n}^{(0)}\left(f, \varepsilon-\operatorname{alm} Y_{0}\right)_{p} \notin C \omega^{2}(f, 1)_{p}$	Theorem 2
$0<\varepsilon<2$: Weakly Almost Positive Approximation	
$E_{n}^{(0)}\left(f, \varepsilon-\operatorname{alm} Y_{0}\right)_{p} \leq C \omega_{\varphi}^{2}\left(f, n^{-1}\right)_{p}$	Theorem 1
$E_{n}^{(0)}\left(f, \varepsilon-\operatorname{alm} Y_{0}\right)_{p} \notin C \omega^{3}(f, 1)_{p}$	Theorem 1
$\varepsilon \geq 2$: Weakly Almost Positive Approximation	
Becomes unconstrained approximation	

Note. If $f \in \mathbf{C}$ or \mathbf{W}_{p}^{1}, then (almost) positive approximation has the same order as the unconstrained case (see Table I or [10]).

TABLE V
Weak Copositive Approximation

$\varepsilon=0$: Almost Copositive Approximation		
$p=\infty$		
$f \in \mathrm{C}$	$E_{n}^{(0)}\left(f, \operatorname{alm} Y_{s}\right)_{\infty} \leq C \omega_{\varphi}^{m}\left(f, n^{-1}\right)_{\infty}$	Theorem 10
	$\exists P \in \mathbf{P}_{n} \cap(\operatorname{alm} \Delta)_{n}^{0}\left(Y_{s}\right)$ such that $\|f(x)-P(x)\| \leq C \omega^{m}\left(f, \Delta_{n}(x)\right)_{\infty}$	
$1 \leq p<\infty$		
$f \in \mathbf{L}_{p}$	$E_{n}^{(0)}\left(f, \operatorname{alm} Y_{s}\right)_{p} \leq C \tau^{m}\left(f, n^{-1}\right)_{p}$	Theorem 11
	$E_{n}^{(0)}\left(f, \operatorname{alm} Y_{s}\right)_{p} \leq C \omega_{\varphi}^{2}\left(f, n^{-1}\right)_{p}$	Theorem 4
	$\begin{gathered} E_{n}^{(0)}\left(f, \operatorname{alm} Y_{s}\right)_{p} \not \subset C \omega^{3}\left(f, n^{-1}\right)_{p}, 1<p<\infty \\ \text { and } \notin C \omega^{4}\left(f, n^{-1}\right)_{p}, \text { if } p=1 \end{gathered}$	Corollary 6
$f \in \mathbf{W}_{p}^{1}$	$E_{n}^{(0)}\left(f, \operatorname{alm} Y_{s}\right)_{p} \leq C n^{-1} \omega_{\varphi}^{m}\left(f^{\prime}, n^{-1}\right)_{p}$	Theorem 11
$\varepsilon<0$: Strongly Almost Copositive Approximation		
$1 \leq p<\infty$ and $s=1$		
$f \in \mathbf{L}_{p}$	$E_{n}^{(0)}\left(f, \varepsilon-\operatorname{alm} Y_{s}\right)_{p} \not \subset C \omega^{2}(f, 1)_{p}$	Theorem 8
$1 \leq p<\infty$ and $s>1$		
$f \in \mathbf{L}_{p}$	$\begin{aligned} & E_{n}^{(0)}\left(f, \varepsilon \text {-alm } Y_{s}\right)_{p} \nless C \omega^{2}\left(f, n^{-1}\right)_{p}, \text { if } p>1 \\ & E_{n}^{(0)}\left(f, \varepsilon \text {-alm } Y_{s}\right)_{p} \not \subset C \omega^{3}\left(f, n^{-1}\right)_{p}, \text { if } p=1 \end{aligned}$	Theorem 9
$0<\varepsilon<1$: Weakly Almost Copositive Approximation		
Same as almost copositive approximation for large n		
$\varepsilon>1$: Weakly Almost Copositive Approximation		
Becomes unconstrained approximation for large n		

TABLE VI
Almost Intertwining Approximation

$p=\infty$				
$f \in \mathrm{C}$	$\widetilde{E}_{n}\left(f, \operatorname{alm} Y_{s}\right)_{\infty} \leq C \omega_{\varphi}^{m}\left(f, n^{-1}\right)_{\infty}$	Theorem 13		
	\exists an almost intertwining pair $\left\{P_{n}, Q_{n}\right\}$ such that $\left\|P_{n}(x)-f(x)\right\|+\left\|f(x)-Q_{n}(x)\right\| \leq C \omega^{m}\left(f, \Delta_{n}(x)\right)_{\infty}$	Theorem 13		
$1 \leq p<\infty$				
$f \in \mathbf{L}_{p}$	$\bar{E}_{n}\left(f, \operatorname{alm} Y_{s}\right)_{p} \leq C \tau^{m}\left(f, n^{-1}\right)_{p}$	Theorem 14		
	$E_{n}\left(f, \operatorname{alm} Y_{s}\right)_{p} \notin C\\|f\\|_{p}$	Example on page 7		
$f \in \mathbf{W}_{p}^{1}$	$\mathbb{E}_{n}\left(f, \operatorname{alm} Y_{s}\right)_{p} \leq C n^{-1} \omega_{\varphi}^{m}\left(f^{\prime}, n^{-1}\right)_{p}$	Theorem 14		

TABLE VII

Nearly Intertwining Approximation

$f \in \mathbf{L}_{p}$	$\widetilde{E}_{n}\left(f, \text { nearly } Y_{s}\right)_{p} \notin C\\|f\\|_{p}$	Theorem 15 and
$0<p \leq \infty$	$E_{n}\left(f, \text { nearly } Y_{s}\right)_{p} \notin C \tau(f, 1)_{p}$	Example on page 7
$f \in \mathbf{W}_{p}^{1}$	$\tilde{E}_{n}\left(f, \text { nearly } Y_{s}\right)_{p} \leq C n^{-1} \omega_{\varphi}^{m}\left(f^{\prime}, n^{-1}\right)_{p}$	Theorem 17

In the next section, we discuss weak positive approximation. Sections 5 and 6 are devoted to weak copositive approximation and weak intertwining approximation, respectively.

4. WEAK POSITIVE APPROXIMATION

Although positive approximation is a special case of copositive approximation, it very often has a better rate; at least this is the case in the ordinary positive approximation. We begin with almost and weakly/strongly almost positive approximation for $1 \leqslant p<\infty$. Theorems 1 and 2 show that almost positive approximation has an order of $\omega_{\varphi}^{2}\left(f, n^{-1}\right)_{p}$, compared with $\omega_{\varphi}\left(f, n^{-1}\right)_{p}$ for the ordinary positive approximation. The rate is exact in the sense that one cannot replace it even by $\omega^{3}(f, 1)_{p}$. This is obtained by relaxing the restriction on intervals of length n^{-2} at $x= \pm 1$. Using larger intervals (of length $n^{-2+\varepsilon}, 0<\varepsilon<2$) gains no more than this, unless giving up the restriction on the whole interval $[-1,1](\varepsilon \geqslant 2)$, that is, back to unconstrained approximation; while using smaller intervals ($\varepsilon<0$) yields no improvement over the ordinary positive approximation. For the case of $p=\infty$, see the note below Table IV.

Theorem 1. Let $f \in \mathbf{L}_{p}[-1,1] \cap \Delta^{0}, 0 \leqslant \varepsilon<2$, and $1 \leqslant p<\infty$. Then

$$
\begin{equation*}
E_{n}^{(0)}\left(f, \varepsilon-\operatorname{alm} Y_{0}\right)_{p} \leqslant C \omega_{\varphi}^{2}\left(f, n^{-1}\right)_{p}, \tag{4.1}
\end{equation*}
$$

where C is an absolute constant. On the other hand, given any $A>0, n \in \mathcal{N}$, $1 \leqslant p<\infty$, and $0 \leqslant \varepsilon<2, \exists f \in \mathbf{L}_{p}[-1,1] \cap \Delta^{0}$ such that

$$
\begin{equation*}
E_{n}^{(0)}\left(f, \varepsilon-\operatorname{alm} Y_{0}\right)_{p}>A \omega^{3}(f, 1)_{p} \tag{4.2}
\end{equation*}
$$

Proof. Inequality (4.1) follows from Theorem 4. To prove (4.2), we let $Q(x):=x^{2}-b^{-1}$, where $b>1$ is a constant to be chosen later, and define

$$
f(x):=Q(x)_{+}:= \begin{cases}Q(x), & |x|>\sqrt{b^{-1}} \\ 0, & \text { otherwise }\end{cases}
$$

Then

$$
\begin{aligned}
\omega^{3}(f, 1)_{p} & =\omega^{3}(f-Q, 1)_{p} \leqslant C\|f-Q\|_{p} \\
& \leqslant C\|Q\|_{\mathbf{L}_{p}\left[-\sqrt{b^{-1}}, \sqrt{b^{-1}}\right]} \leqslant C b^{-1-1 /(2 p)} .
\end{aligned}
$$

Suppose, towards a contradiction, P_{n} is a polynomial from \mathbf{P}_{n} such that $P_{n}(0) \geqslant 0$ and $\left\|P_{n}-f\right\|_{p} \leqslant A \omega^{3}(f, 1)_{p}$. Then

$$
\begin{aligned}
\left|P_{n}(0)-Q(0)\right| & \leqslant\left\|P_{n}-Q\right\|_{\infty} \leqslant C\left\|P_{n}-Q\right\|_{p} \leqslant C\left\|P_{n}-f\right\|_{p}+C\|f-Q\|_{p} \\
& \leqslant C A \omega^{3}(f, 1)_{p}+C\|f-Q\|_{p} \leqslant C_{1} b^{-1-1 /(2 p)},
\end{aligned}
$$

where C_{1} depends on n but not on b. Therefore,

$$
\begin{aligned}
P_{n}(0) & \leqslant Q(0)+C_{1} b^{-1-1 /(2 p)}=-b^{-1}+C_{1} b^{-1-1 /(2 p)} \\
& =b^{-1-1(2 p)}\left(C_{1}-b^{1 /(2 p)}\right)<0
\end{aligned}
$$

for sufficiently large b, which is the desired contradiction.
Remark. The same proof can be used to show that for any $\beta>0$ and $0 \leqslant \varepsilon<2$,

$$
E_{n}^{(0-)}\left(f, \varepsilon-\operatorname{alm} Y_{0}\right)_{p} \nless C n^{\beta} \omega^{3}(f, 1)_{p}, \quad 1 \leqslant p<\infty .
$$

Theorem 2. For any given $A>0,1 \leqslant p<\infty, \varepsilon<0$, and sufficiently large $n, \exists f \in \mathbf{L}_{p}[-1,1] \cap \Delta^{0}$ such that

$$
\begin{equation*}
E_{n}^{(0)}\left(f, \varepsilon-\operatorname{alm} Y_{0}\right)_{p}>A \omega^{2}(f, 1)_{p} \tag{4.3}
\end{equation*}
$$

Proof. We only give a sketch since the proof is similar to that of Theorem 1. Let $L(x):=x+1-n^{-2} a$, and $f(x):=L(x)_{+}:=\max \{L(x), 0\}$. By choosing the value of the parameter $a>4 n^{\varepsilon}$ carefully one can readily prove that

$$
P_{n}\left(-1+2 n^{\varepsilon-2}\right)<0
$$

for any polynomial $P_{n} \in \mathbf{P}_{n}$ with $\left\|P_{n}-f\right\|_{p} \leqslant A \omega^{2}(f, 1)_{p}$ provided n is sufficiently large. Therefore P_{n} is not strongly almost positive.

5. WEAK COPOSITIVE APPROXIMATION

In this section, we first show in Theorem 4 that almost copositive approximation in $\mathbf{L}_{p}, 1 \leqslant p<\infty$, improves the rate to $\omega_{\varphi}^{2}\left(f, n^{-1}\right)_{p}$ from $\omega_{\varphi}\left(f, n^{-1}\right)_{p}$, the rate for the ordinary copositive approximation. We first need an analog of this for splines. The result for polynomials will then come from the following theorem by the authors [10].

Theorem A. Let $Y_{s}(s \geqslant 0)$ be given, $m \in \mathscr{N}, \mu \geqslant 2 m+30,0<p \leqslant \infty$, and let $S(x)$ be a spline of an odd order $r(r=2 m+1)$ on the knot sequence $\left\{x_{i}=\cos (i \pi / n)\right\}_{i \in I_{n}\left(Y_{s}\right)}$, where $n>C\left(Y_{s}\right)$ is such that there are at least 4
knots x_{i} in each interval $\left(y_{j}, y_{j+1}\right), j=0, \ldots, s$, and $I_{n}\left(Y_{s}\right):=\{1, \ldots, n\} \backslash$ $\left\{i, i-1: x_{i} \leqslant y_{j}<x_{i-1}\right.$ for some $\left.1 \leqslant j \leqslant s\right\}$. Then there exists an intertwining pair of polynomials $\left\{P_{1}, P_{2}\right\} \subset \mathbf{P}_{C(r) n}$ for S with respect to Y_{s} such that

$$
\begin{gather*}
\left\|P_{1}-P_{2}\right\|_{p}^{p} \leqslant C(r, s, \min \{p, 1\})^{p} \sum_{i=1}^{n-1} E_{r-1}\left(S, \hat{I}_{i} \cup \hat{I}_{i+1}\right)_{p}^{p}, \\
\text { if } \quad 0<p<\infty, \tag{5.1}
\end{gather*}
$$

and

$$
\begin{align*}
& \left|P_{1}(x)-P_{2}(x)\right| \leqslant C(r, \mu, s) \sum_{i=1}^{n-1} E_{r-1}\left(S, \hat{I}_{i} \cup \hat{I}_{i+1}\right)_{\infty}\left(\frac{\left|\hat{I}_{i}\right|}{\left|x-x_{i}\right|+\left|\hat{I}_{i}\right|}\right)^{\mu}, \\
& \quad \text { if } p=\infty \tag{5.2}
\end{align*}
$$

where $\hat{I}_{i}:=\left[x_{i}, x_{i-1}\right]$ and $E_{n}(f,[a, b])_{p}:=\inf _{P_{n} \in \mathbf{P}_{n}}\left\|f-P_{n}\right\|_{\mathbf{L}_{p}[a, b]}$.
Let $k>0$ be an integer, and $-1=t_{0}<t_{1}<\cdots<t_{k-1}<t_{k}=1$ be a partition of $I=[-1,1]$. Define the so-called auxiliary knots (DeVore and Lorentz [5, p. 140]) by $t_{i}:=-1+i \Delta t_{0}, i=-r+1, \ldots,-1$, and $t_{i}:=1+(i-k) \Delta t_{k-1}$, $i=k+1, \ldots, k+r-1$, where $\Delta t_{i}:=t_{i+1}-t_{i}$. Let $I_{i}:=\left[t_{i}, t_{i+1}\right]$, and $J_{i}:=\left[t_{i-r+1}, t_{i+r}\right]$. Denote $\mathbf{T}_{k}:=\left\{t_{i}\right\}_{i=-r+1}^{k+r-1}, \Delta \mathbf{T}_{k}:=\max \left\{\Delta t_{i}\right\}$, and for $i=-r+1, \ldots, k-1, \quad d_{i}:=\left(t_{i+r}-t_{i}\right) / r, \quad t_{i}^{*}:=\left(t_{i+1}+\cdots+t_{i+r-1}\right) /(r-1)$, $d_{i}^{*}:=2 \min \left(t_{i}^{*}-t_{i}, t_{i+r}-t_{i}^{*}\right) / r$, and $I_{i}^{*}:=\left[t_{i}^{*}-d_{i}^{*} / 2, t_{i}^{*}+d_{i}^{*} / 2\right]$. For any $f \in \mathbf{L}_{1}\left[t_{-r+1}, t_{k+r-1}\right]$, we define a linear operator T by

$$
T f:=\sum_{i=-r+1}^{k-1} c_{i} N_{i}, \quad c_{i}:=c_{i}(f):=d_{i}^{*-1} \int_{I_{i}^{*}} f,
$$

where $N_{i}(x):=N_{r, i}(x):=N\left(x ; t_{i}, \ldots, t_{i+r}\right)$ is the B-spline on t_{i}, \ldots, t_{i+r} normalized so that $\sum N_{i}(x) \equiv 1$. Note that T preserves linearity, that is, $T l=l$ for any $l \in \mathbf{P}_{1}$, because T becomes the Schoenberg variation diminishing operator in this case [2, Chap. XI-XII].

For any function $f \in \mathbf{L}_{p}[-1,1]$, we use its Whitney's Extension to $\left[t_{-r+1}, t_{k+r-1}\right]$ so that T can be applied. This will only enlarge the constant C in (5.3) and (5.4) by a factor depending only on r (see Theorem 6.4 .1 and its proof in [5]). And we shall still use the letter f for the extension for the sake of simple notation. With the notation above, we prove

Lemma 3. Let $f \in \mathbf{L}_{p}[-1,1]$. Then the spline $S:=$ Tf of order r on the knot sequence \mathbf{T}_{k} satisfies

$$
\begin{align*}
& \|f-S\|_{p} \leqslant C \omega^{2}\left(f, \Delta \mathbf{T}_{k}\right)_{p}, \tag{5.3}\\
& \|f-S\|_{p}^{p} \leqslant C^{p} \sum_{i=-r+1}^{k-1} \omega^{2}\left(f, \Delta t_{i}, J_{i}\right)_{p}^{p}, \tag{5.4}
\end{align*}
$$

where the constant C depends on r and the ratios $\Delta t_{i} / \Delta t_{i-1}$ of lengths of neighboring subintervals.

Proof. By Hölder's Inequality we have

$$
\left|c_{i}\right| \leqslant d_{i}^{*-1} \int_{I_{i}^{*}}|f| \leqslant d_{i}^{*-1}\|f\|_{\mathbf{L}_{p}\left(I_{i}^{*}\right)} d_{i}^{*} 1-\frac{1}{p}=d_{i}^{*-1 / p}\|f\|_{\mathbf{L}_{p}\left(I_{i}^{*}\right)} .
$$

By the well-known relationship between a spline and its B-spline series coefficients (de Boor, see [2, Chap. XI] and [21, Section 4.6] for $p=\infty$, and [5, Section 5.4] for $0<p<\infty$)

$$
\begin{align*}
\|T f\|_{\mathbf{L}_{p}\left(I_{i}\right)} & =\|S\|_{\mathbf{L}_{p}\left(I_{i}\right)}=\left\|\sum_{j=i-r+1}^{i} c_{j} N_{j}\right\|_{\mathbf{L}_{p}\left(I_{i}\right)} \leqslant C \sum_{j=i-r+1}^{i}\left|c_{j}\right| d_{j}^{1 / p} \\
& \leqslant C \sum_{j=i-r+1}^{i}\|f\|_{\mathbf{L}_{p}\left(I_{j}^{*}\right)}\left(d_{j} / d_{j}^{*}\right)^{1 / p} \leqslant C\|f\|_{\mathbf{L}_{p}\left(J_{i}\right)} . \tag{5.5}
\end{align*}
$$

Let l_{i} be a best linear approximation to f on I_{i}; then

$$
\left\|f-l_{i}\right\|_{\mathbf{L}_{p}\left(I_{i}\right)} \leqslant C \omega^{2}\left(f, \Delta t_{i}, I_{i}\right)_{p} .
$$

This l_{i} is also a near best linear approximation on $J_{i}=\left[t_{i-r+1}, t_{i+r}\right] \supseteq I_{i}$ (DeVore and Popov [6]) and therefore satisfies

$$
\left\|f-l_{i}\right\|_{\mathbf{L}_{p}\left(J_{i}\right)} \leqslant C \omega^{2}\left(f, \Delta t_{i}, J_{i}\right)_{p}
$$

Applying (5.5) to $T\left(f-l_{i}\right)$ gives (5.4);

$$
\begin{aligned}
\|f-S\|_{\mathbf{L}_{p}\left(I_{i}\right)} & =\|f-T f\|_{\mathbf{L}_{p}\left(I_{i}\right)} \leqslant\left\|f-l_{i}\right\|_{\mathbf{L}_{p}\left(I_{i}\right)}+\left\|T\left(f-l_{i}\right)\right\|_{\mathbf{L}_{p}\left(I_{i}\right)} \\
& \leqslant C\left(\omega^{2}\left(f, \Delta t_{i}, I_{i}\right)_{p}+\left\|f-l_{i}\right\|_{\mathbf{L}_{p}\left(J_{i}\right)}\right) \leqslant C \omega^{2}\left(f, \Delta t_{i}, J_{i}\right)_{p},
\end{aligned}
$$

which in turn gives (5.3) (Leviatan and Mhaskar [19], also see Hu [8]):

$$
\|f-S\|_{p} \leqslant C \omega^{2}\left(f, \Delta \mathbf{T}_{k},\left[t_{-r+1}, t_{k+r-1}\right]\right)_{p} \leqslant C \omega^{2}\left(f, \Delta \mathbf{T}_{k},[-1,1]\right)_{p}
$$

The following theorem gives affirmative results on almost copositive approximation. Here and throughout the rest of the paper, we denote $J_{j}^{-}:=\left[y_{j}-\Delta_{n}\left(y_{j}\right), y_{j}\right]$ and $J_{j}^{+}:=\left[y_{j}, y_{j}+\Delta_{n}\left(y_{j}\right)\right]$.

Theorem 4. Suppose $f \in \mathbf{L}_{p}[-1,1] \cap \Delta^{0}\left(Y_{s}\right)$.
(i) Let \mathbf{T}_{k} be a given single-knot sequence such that there are at least r knots in each of $J_{j}^{-}, j=1, \ldots, s+1$, and in each of $J_{j}^{+}, j=0, \ldots, s$, if they do not intersect J_{j-1}^{+}or J_{j+1}^{-}, respectively. Then $S:=T f=\sum_{i=-r+1}^{k-1} c_{i} N_{i}$ is almost copositive with f.
(ii) For any $n>C\left(Y_{s}\right)$, there exists a polynomial $P \in \mathbf{P}_{n}$ that is almost copositive with f and satisfies

$$
\begin{equation*}
\|f-P\|_{p} \leqslant C(s) \omega_{\varphi}^{2}\left(f, n^{-1}\right)_{p} . \tag{5.6}
\end{equation*}
$$

Remark. Although we require $n>C\left(Y_{s}\right)$ in (ii) for simplicity, it seems unnecessary. In many cases of constrained approximation how large n is depends on Y_{s} because two y_{j} 's may be very close to each other, and the degree of a polynomial will then have to be very large to follow the trend of the graph. In this paper, however, we relax the shape-preserving requirement in a neighborhood of each y_{j} of radius $\Delta_{n}\left(y_{j}\right)$. When some points in Y_{s} get too close to one another, these neighborhoods will be connected and we will not have to worry about the sign changes at these points. In other words, the set Y_{s} can be "thinned out" if its points are dense (or, equivalently, if n is small).

Proof. For (i), we only prove that S is copositive with f between J_{0}^{+} and J_{1}^{-}, which is $A_{0}:=\left[-1+n^{-2}, y_{1}-\Delta_{n}\left(y_{1}\right)\right]$, if the two intervals do not intersect. For the sake of certainty, we assume f is nonnegative on A_{0}. Since there are at least r knots in J_{0}^{+}, if we denote the last knot less than $y_{1}-\Delta_{n}\left(y_{1}\right)$ by $t_{j_{1}}$, then the restriction of S on A_{0} can be written as $\left.S\right|_{A_{0}}=$ $\sum_{i=0}^{j_{1}} c_{i} N_{i}$. From the facts that c_{i} is the integral average of f on $I_{i}^{*} \subset$ [t_{i}, t_{i+r}], and that there are at least r knots in each of J_{0}^{+}and J_{1}^{-}, we know $c_{i} \geqslant 0, i=0, \ldots, j_{1}$. Thus $\left.S\right|_{A_{0}} \geqslant 0$.

To prove (ii), we take $r=3$ in Lemma 3 and choose $k \geqslant C_{1} n$ large enough so that the knot sequence $\mathbf{T}_{k-2 s}:=\left\{x_{i}=\cos (i \pi / k)\right\}_{i \in I_{k}\left(Y_{s}\right)}$ has at least 4 knots in each of $J_{j}^{-}, j=1, \ldots, s+1$, and $J_{j}^{+}, j=0, \ldots, s$, if they do not intersect J_{j-1}^{+}or J_{j+1}^{-}, respectively. We add auxiliary knots to $\mathbf{T}_{k-2 s}$ as before Lemma 3, and define a quadratic spline on $\mathbf{T}_{k-2 s}$ by $S:=T f$. By Lemma 3 and Theorem A,

$$
\begin{aligned}
\|S-P\|_{p}^{p} & \leqslant C^{p} \sum_{i=1}^{k-1} E_{2}\left(S, \hat{I}_{i} \cup \hat{I}_{i+1}\right)_{p}^{p} \leqslant C^{p} \sum_{i=1}^{k-1} \omega^{2}\left(f\left|\hat{I}_{i} \cup \hat{I}_{i+1}\right|, \hat{I}_{i} \cup \hat{I}_{i+1}\right)_{p}^{p} \\
& \leqslant C^{p} \omega_{\varphi}^{2}\left(f, n^{-1}\right)_{p}^{p},
\end{aligned}
$$

where in the last step we have used an inequality established and/or used in $[3,4,9,16,10]$. The fact that P is almost copositive with f follows from (i) and Theorem A.

In the following four theorems and corollary, we show that (5.3), (5.4), and (5.6) are exact for $1<p<\infty$ in the sense that one can not replace ω^{2} or ω_{φ}^{2} by ω^{3} in them (Corollary 6); that weakly almost copositive approximation does not do better than these (Corollary 6), and strongly almost copositive approximation does not do better than the ordinary copositive approximation (Theorems 8 and 9), in spite of larger intervals in which the restriction is relaxed.

Theorem 5. Let Y_{s} be fixed. For any given $A>0,1 \leqslant p<\infty$, and sufficiently large $n \in \mathcal{N}$, there exists a function $f \in \mathbf{C}[-1,1] \cap \Delta^{0}\left(Y_{s}\right)$ such that for every polynomial $P_{n} \in \mathbf{P}_{n}$, which is copositive with f on $\left[y_{s}+\left(1-y_{s}\right) / 3\right.$, $\left.1-\left(1-y_{s}\right) / 3\right]$, the following inequality holds,

$$
\begin{equation*}
\left\|f-P_{n}\right\|_{p}>A n^{\beta} \omega^{m}\left(f, n^{-1}\right)_{p} \tag{5.7}
\end{equation*}
$$

where $m=3$ and $\beta<(p-1) / p(2 p+1)$ if $1<p<\infty$, and $m=4$ and $\beta<1 / 3$ if $p=1$.

Corollary 6. Let Y_{s} be fixed. For any given $0 \leqslant \varepsilon<1, A>0,1 \leqslant p<\infty$, and sufficiently large $n \in \mathscr{N}$, there exists $f \in \mathbf{C}[-1,1] \cap \Delta^{0}\left(Y_{s}\right)$ such that

$$
E_{n}^{(0)}\left(f, \varepsilon \text {-alm } Y_{s}\right)_{p}>A \begin{cases}\omega^{3}\left(f, n^{-1}\right)_{p}, & \text { if } 1<p<\infty \\ \omega^{4}\left(f, n^{-1}\right)_{p}, & \text { if } p=1 .\end{cases}
$$

To prove Theorem 5, we need the following inequality for polynomials. We were aware of its usage in Zhou [23] through communication with him, but could not find a handy reference. The following is a modification of the proof Professor Zhou outlined to the authors.

Lemma 7. Let $P_{n} \in \mathbf{P}_{n}$ and $1 \leqslant p<\infty$. Then

$$
\left|P_{n}(x) \sqrt{1-x^{2}}\right| \leqslant C_{p} n^{1 / p}\left\|P_{n}\right\|_{p}, \quad x \in[-1,1] .
$$

Proof. Let $x:=\cos \theta$ and $t_{n}(\theta):=P_{n}(\cos \theta) \sin \theta$. Since t_{n} is a trigonometric function of degree $n+1$, applying the Nikolskii's inequality, we have

$$
\left|t_{n}(\theta)\right| \leqslant C_{p} n^{1 / p}\left\|t_{n}\right\|_{\mathbf{L}_{p}[0,2 \pi]} .
$$

Notice that

$$
\begin{aligned}
\left\|t_{n}\right\|_{\mathbf{L}_{p}[0,2 \pi]}^{p} & =\int_{0}^{2 \pi}\left|t_{n}(\theta)\right|^{p} d \theta=2 \int_{0}^{\pi}\left|P_{n}(\cos \theta)\right|^{p}(\sin \theta)^{p} d \theta \\
& \leqslant 2 \int_{0}^{\pi}\left|P_{n}(\cos \theta)\right|^{p} \sin \theta d \theta=2 \int_{-1}^{1}\left|P_{n}(x)\right|^{p} d x=2\left\|P_{n}\right\|_{p}^{p}
\end{aligned}
$$

Therefore, we obtain

$$
\left|P_{n}(x) \sqrt{1-x^{21}}\right|=\left|t_{n}(\theta)\right| \leqslant C_{p} n^{1 / p}\left\|P_{n}\right\|_{p}
$$

Proof of Theorem 5. The following is a modification of the proof used by Gilewicz and Shevchuk [7]. Let $n \geqslant s+2, x_{0}:=\left(1+y_{s}\right) / 2$,

$$
L(x):=\left(x-x_{0}+b\right)\left(x-x_{0}-b\right) \prod_{j=1}^{s}\left(x-y_{j}\right)
$$

where $b<\left(1-y_{s}\right) / 6$ is a constant to be chosen later, and let

$$
f(x):= \begin{cases}L(x), & \text { if } x \notin\left[x_{0}-b, x_{0}+b\right] \\ 0, & \text { otherwise }\end{cases}
$$

Suppose (5.7) is not true, i.e., there exists a polynomial $P_{n} \in \mathbf{P}_{n}$ such that $P_{n}(x) \geqslant 0, x \in\left[y_{s}+\left(1-y_{s}\right) / 3,1-\left(1-y_{s}\right) / 3\right]$ (therefore, $P_{n}(x) \geqslant 0$ for $\left.x \in\left[x_{0}-b, x_{0}+b\right]\right)$, and

$$
\left\|f-P_{n}\right\|_{p} \leqslant A n^{\beta} \omega^{m}\left(f, n^{-1}\right)_{p}
$$

Without loss of generality, we can assume $\beta \geqslant 0$. Note that

$$
\|f-L\|_{p}=\left(\int_{x_{0}-b}^{x_{0}+b}|L(x)|^{p} d x\right)^{1 / p} \leqslant C b^{2+1 / p}
$$

and

$$
\begin{aligned}
\omega^{m}\left(f, n^{-1}\right)_{p} & \leqslant \omega^{m}\left(f-L, n^{-1}\right)_{p}+\omega^{m}\left(L, n^{-1}\right)_{p} \\
& \leqslant 2^{m}\|f-L\|_{p}+n^{-m}\left\|L^{(m)}\right\|_{p} \leqslant C b^{2+1 / p}+C n^{-m}
\end{aligned}
$$

Also, by Lemma 7, we have

$$
\begin{aligned}
\| P_{n} & -L \|_{p} \\
& \geqslant C n^{-1 / p}\left(P_{n}\left(x_{0}\right)-L\left(x_{0}\right)\right) \sqrt{1-x_{0}^{2}} \\
& \geqslant-C\left(Y_{s}\right) n^{-1 / p} L\left(x_{0}\right)=C\left(Y_{s}\right) n^{-1 / p} b^{2} \prod_{j=1}^{s}\left(x_{0}-y_{j}\right) \geqslant C\left(Y_{s}\right) n^{-1 / p} b^{2}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
C\left(Y_{s}\right) n^{-1 / p} b^{2} & \leqslant\left\|P_{n}-L\right\|_{p} \leqslant\left\|P_{n}-f\right\|_{p}+\|f-L\|_{p} \\
& \leqslant A n^{\beta} \omega^{m}\left(f, n^{-1}\right)_{p}+C b^{2+1 / p} \leqslant C n^{\beta} b^{2+1 / p}+C n^{-m+\beta} .
\end{aligned}
$$

This implies the inequality

$$
b^{2}\left(C\left(Y_{s}\right) n^{-1 / p}-C n^{\beta} b^{1 / p}\right) \leqslant C n^{-m+\beta} .
$$

Now, let $b=c n^{-1-\beta p}$ with sufficiently small c, then the last inequality implies

$$
n^{m-2-2 \beta p-\beta-1 / p} \leqslant C\left(p, Y_{s}\right) .
$$

But this cannot be true for sufficiently large n since the condition on m, β, and p in the theorem imply $m>2+2 \beta p+\beta+1 / p$.

Theorem 8. For any given $A>0, \varepsilon<0,1 \leqslant p<\infty$, and sufficiently large $n \in \mathcal{N}$, there exists $f \in \mathbf{L}_{p}[-1,1]$ that changes sign only once at $x=0$ such that for every polynomial $P_{n} \in \mathbf{P}_{n}$ with $P_{n}\left(2 n^{-1+\varepsilon}\right) \geqslant 0$ the following inequality holds:

$$
\left\|f-P_{n}\right\|_{p}>A \omega^{2}(f, 1)_{p}
$$

Proof. Here once again we omit details of the proof since the argument is similar to our previous counterexamples. Let $L(x):=n / a(x-a / n)$, and let

$$
f(x):= \begin{cases}L(x), & \text { if } x \notin[0, a / n] \\ 0, & \text { otherwise }\end{cases}
$$

Then $f \in \mathbf{L}_{p}[-1,1] \cap \Delta^{0}\left(Y_{1}\right)$, where $Y_{1}=\{0\}$. By choosing the value of the parameter $a>2 n^{\varepsilon}$ carefully one can readily prove that $P_{n}\left(2 n^{-1+\varepsilon}\right)<0$ for any polynomial $P_{n} \in \mathbf{P}_{n}$ with $\left\|f-P_{n}\right\|_{p} \leqslant A \omega^{2}(f, 1)_{p}$ provided n is sufficiently large.

Theorem 9. Let $Y_{s}, s \geqslant 1$, be fixed. For any given $\varepsilon<0, A>0,1 \leqslant p<\infty$, and sufficiently large $n \in \mathcal{N}$, there exists a function $f \in \mathbf{L}_{p}[-1,1] \cap \Delta^{0}\left(Y_{s}\right)$ such that for every polynomial $P_{n} \in \mathbf{P}_{n}$ with $P_{n}\left(y_{s}+2 \Delta_{n}\left(y_{s}\right) n^{\varepsilon}\right) \geqslant 0$ the following inequality holds,

$$
\begin{equation*}
\left\|f-P_{n}\right\|_{p}>A \omega^{m}\left(f, n^{-1}\right)_{p} \tag{5.8}
\end{equation*}
$$

where $m=2$ if $1<p<\infty$, and $m=3$ if $p=1$. In particular, (5.8) holds for all polynomials that are strongly almost copositive with f.

Remark. As in Theorem 5, the inequality (5.8) can be improved to

$$
\left\|f-P_{n}\right\|_{p}>A n^{\beta} \omega^{m}\left(f, n^{-1}\right)_{p} \quad \text { for some } \quad \beta>0 .
$$

Proof. We use the same idea as in Theorem 5. Let $A>0$ be fixed, and let $n \geqslant 2^{-1 / \varepsilon}$ and b be chosen later. Denote

$$
L(x):=\left(x-y_{s}-b \Delta_{n}\left(y_{s}\right)\right) \prod_{j=1}^{s-1}\left(x-y_{j}\right)
$$

and

$$
f(x):= \begin{cases}L(x), & \text { if } \quad x \notin\left(y_{s}-b \Delta_{n}\left(y_{s}\right), y_{s}+b \Delta_{n}\left(y_{s}\right)\right), \\ 0, & \text { otherwise } .\end{cases}
$$

Suppose that the assertion of the theorem is not true, i.e., there exists a polynomial $P_{n} \in \mathbf{P}_{n}$ such that $P_{n}(\tilde{x}) \geqslant 0$, where $\tilde{x}=y_{s}+2 \Delta_{n}\left(y_{s}\right) n^{\varepsilon}$, and

$$
\left\|f-P_{n}\right\|_{p} \leqslant A \omega^{m}\left(f, n^{-1}\right)_{p}
$$

Note that

$$
\|f-L\|_{p} \leqslant\|L\|_{\mathbf{L}_{p}\left[y_{s}-b \Delta_{n}\left(y_{s}\right), y_{s}+b \Delta_{n}\left(y_{s}\right)\right]} \leqslant C\left(b \Delta_{n}\left(y_{s}\right)\right)^{1+1 / p} \leqslant C\left(Y_{s}\right)(b / n)^{1+1 / p}
$$ and

$$
\begin{aligned}
\omega^{m}\left(f, n^{-1}\right)_{p} & \leqslant \omega^{m}\left(f-L, n^{-1}\right)_{p}+\omega^{m}\left(L, n^{-1}\right)_{p} \\
& \leqslant 2^{m}\|f-L\|_{p}+n^{-m}\left\|L^{(m)}\right\|_{p} \leqslant C\left(Y_{s}\right)(b / n)^{1+1 / p}+C n^{-m} .
\end{aligned}
$$

Now, by Lemma 7, we have

$$
\begin{aligned}
& P_{n}(\tilde{x})-L(\tilde{x}) \\
& \quad \leqslant C n^{1 / p}\left(\sqrt{1-\tilde{x}^{2}}\right)^{-1}\left\|P_{n}-L\right\|_{p} \\
& \quad \leqslant C\left(Y_{s}\right) n^{1 / p}\left(\left\|P_{n}-f\right\|_{p}+\|f-L\|_{p}\right) \leqslant C\left(Y_{s}\right) n^{1 / p}\left((b / n)^{1+1 / p}+n^{-m}\right) \\
& \quad \leqslant C\left(Y_{s}\right)\left(b^{1+1 / p} n^{-1}+n^{-m+1 / p}\right) .
\end{aligned}
$$

Since

$$
\begin{aligned}
L(\tilde{x}) & =-\Delta_{n}\left(y_{s}\right)\left(b-2 n^{\varepsilon}\right) \prod_{j=1}^{s-1}\left(y_{s}-y_{j}+2 \Delta_{n}\left(y_{s}\right) n^{\varepsilon}\right) \\
& \leqslant-C_{1}\left(Y_{s}\right) n^{-1}\left(b-2 n^{\varepsilon}\right),
\end{aligned}
$$

we have

$$
P_{n}(\tilde{x}) \leqslant-C_{1}\left(Y_{s}\right) n^{-1}\left(b-2 n^{\varepsilon}\right)+C\left(Y_{s}\right)\left(b^{1+1 / p} n^{-1}+n^{-m+1 / p}\right)<0
$$

if $b>4 n^{\varepsilon}, b^{1+1 / p}>n^{-m+1+1 / p}$ and $b<C^{p}$. This choice of b is possible if n is sufficiently large, and $m>1+1 / p$, which is true with the choices of m and p in the theorem. This is the desired contradiction.

So far we have not mentioned anything about almost copositive approximation for $p=\infty$. The theorem below says it reaches the same rate as the unconstrained case. The result follows from Theorem 13, their analogue for almost intertwining approximation.

Theorem 10. Let $f \in C[-1,1] \cap \Delta^{0}\left(Y_{s}\right)$, and m be a positive integer. Then

$$
E_{n}^{(0)}\left(f, \operatorname{alm} Y_{s}\right)_{\infty} \leqslant C \omega_{\varphi}^{m}\left(f, n^{-1}\right)_{\infty} .
$$

Moreover, there exists a $P_{n} \in \mathbf{P}_{n} \cap(\operatorname{alm} \Delta)_{n}^{0}\left(Y_{s}\right)$ such that

$$
\left|f(x)-P_{n}(x)\right| \leqslant C \omega^{m}\left(f, \Delta_{n}(x)\right)_{\infty}
$$

The last theorem of the section shows that τ-modulus of any order $m>0$ can be used for $1 \leqslant p<\infty$. This is consistent with the previous theorem since $\tau^{m}(f, t)_{\infty}=\omega^{m}(f, t)_{\infty}, \forall t>0$. This theorem follows from its analogue for almost intertwining approximation (Theorem 14) again.

Theorem 11. Let $f \in \mathbf{L}_{p}[-1,1] \cap \Delta^{0}\left(Y_{s}\right), \quad 1 \leqslant p<\infty$, and m be a positive integer. Then

$$
E_{n}^{(0)}\left(f, \operatorname{alm} Y_{s}\right)_{p} \leqslant C \tau^{m}\left(f, n^{-1}\right)_{p}
$$

If f also belongs to $\mathbf{W}_{p}^{1}[-1,1]$, then

$$
E_{n}^{(0)}\left(f, \operatorname{alm} Y_{s}\right)_{p} \leqslant C n^{-1} \omega_{\varphi}^{m}\left(f^{\prime}, n^{-1}\right)_{p} .
$$

6. WEAK INTERTWINING APPROXIMATION

6.1. Almost Intertwining Approximation

We first prove the following result for almost intertwining spline approximation. We remind the reader that $J_{j}^{-}:=\left[y_{j}-\Delta_{n}\left(y_{j}\right), y_{j}\right]$ and $J_{j}^{+}:=$ $\left[y_{j}, y_{j}+\Delta_{n}\left(y_{j}\right)\right]$.

Theorem 12. Let $f \in \mathbf{L}_{p}[-1,1], m>0, n>0$ and Y_{s} be given. Let $\mathbf{T}_{k}:=\left\{t_{i}\right\}$ be a single-knot sequence, with auxiliary knots added as before Lemma 3, that has at least $2(m-1)^{2}+1$ knots in the interior of each of J_{j}^{-} and $J_{j}^{+}, j=1, \ldots, s$, if they do not intersect J_{j-1}^{+}or J_{j+1}^{-}, respectively. Then there exists an almost intertwining pair of splines $\{\bar{S}, S\}$ of order m on the knot sequence \mathbf{T}_{k} such that for $i=0, \ldots, k-1$,

$$
\|\bar{S}-f\|_{L_{p}\left(I_{i}\right)}+\|S-f\|_{L_{p}\left(I_{i}\right)} \leqslant C \tau^{m}\left(f,\left|\mathscr{\mathscr { F }}_{i}\right|, \mathscr{I}_{i}\right)_{p},
$$

where $I_{i}:=\left[t_{i}, t_{i+1}\right], \mathscr{I}_{i}$ is an interval such that $I_{i} \subset \mathscr{I}_{i} \subseteq\left[t_{i-6(m-1)^{2}}\right.$, $\left.t_{i+6(m-1)^{2}}\right]$, and C is a constant depending on m and the maximum ratios $\Delta t_{i} / \Delta t_{i+1}$ of lengths of neighboring subintervals I_{i} and I_{i+1}.

Proof. Since the theorem can be easily proved from results of one-sided approximation and Beatson's blending lemma [1, Lemma 3.2] by somehow standard techniques, (see, for example, Lemma 3, Theorem 4 and [8-13]), we only sketch the proof. We first construct overlapping local polynomials of degree $m-1$ by using one-sided approximations. The adjacent local polynomials are then blended by Beatson's Lemma. The error estimate is similar to that of Theorem 4.

From this and Theorem A, we can prove the following two theorems.
Theorem 13. Let $f \in C[-1,1], m>0$, and Y_{s} be given. Then

$$
\widetilde{E}_{n}\left(f, \operatorname{alm} Y_{s}\right)_{\infty} \leqslant C \omega_{\varphi}^{m}\left(f, n^{-1}\right)_{\infty} .
$$

Moreover, there exists an almost intertwining pair of polynomials $\left\{P_{n}, Q_{n}\right\}$ such that

$$
\left|P_{n}(x)-f(x)\right|+\left|f(x)-Q_{n}(x)\right| \leqslant C \omega^{m}\left(f, \Delta_{n}(x)\right)_{\infty} .
$$

Proof. Let $r=2 m+1$ and $T_{k-2 s}:=\left\{x_{i}=\cos (i \pi / k)\right\}_{i \in I_{k}\left(Y_{s}\right)}$, where $n \leqslant k$ $\leqslant C\left(Y_{s}, r\right) n$ such that $T_{k-2 s}$ satisfies the hypothesis in Theorem 12. Then, from Theorem 12, there exists an almost intertwining pair of splines $\{\bar{S}, S\}$ of order r on the knot sequence $T_{k-2 s}$ such that

$$
\|\bar{S}-f\|_{C\left(I_{i}\right)}+\|S-f\|_{C\left(I_{i}\right)} \leqslant C \omega^{r}\left(f,\left|\mathscr{I}_{i}\right|, \mathscr{I}_{i}\right)_{\infty} .
$$

Moreover, we have

$$
\begin{aligned}
E_{r-1}\left(\bar{S}, I_{i} \cup I_{i+1}\right)_{\infty} & \leqslant E_{r-1}\left(\bar{S}-f, I_{i} \cup I_{i+1}\right)_{\infty}+E_{r-1}\left(f, I_{i} \cup I_{i+1}\right)_{\infty} \\
& \leqslant\|\bar{S}-f\|_{C\left(I_{i} \cup I_{i+1}\right)}+C \omega^{r}\left(f,\left|I_{i} \cup I_{i+1}\right|, I_{i} \cup I_{i+1}\right)_{\infty} \\
& \leqslant C \omega^{r}\left(f,\left|\mathscr{I}_{i}\right|, \mathscr{I}_{i}\right)_{\infty},
\end{aligned}
$$

and, similarly,

$$
E_{r-1}\left(S, I_{i} \cup I_{i+1}\right)_{\infty} \leqslant C \omega^{r}\left(f,\left|\mathscr{I}_{i}\right|, \mathscr{I}_{i}\right)_{\infty} .
$$

Now, by applying Theorem A to \bar{S} and S, respectively, we obtain intertwining pairs of polynomials $\left\{\bar{P}_{1}, \bar{P}_{2}\right\}$ and $\left\{P_{1}, P_{2}\right\}$ such that the estimate (5.2) holds for $\left|\bar{P}_{1}(x)-\bar{P}_{2}(x)\right|$ and $\left|P_{1}(x)-P_{2}(x)\right|$. Let $x \in I_{i}$ and $\psi_{i}(x):=$ $\left|I_{i}\right| /\left(\left|x-x_{i}\right|+\left|I_{i}\right|\right)$. Since $\left|\mathscr{I}_{i}\right| \sim\left|I_{i}\right| \sim \Delta_{n}(x)$ and $\sum \psi_{i}^{2}(x)<\infty$, it follows that

$$
\begin{aligned}
\left|\bar{P}_{1}(x)-\bar{P}_{2}(x)\right| & \leqslant C(r, \mu, s) \sum_{j=1}^{k-1} E_{r-1}\left(\bar{S}, I_{j} \cup I_{j+1}\right)_{\infty}\left(\psi_{j}(x)\right)^{\mu} \\
& \leqslant C(r, \mu, s) \sum_{j=1}^{k-1} \omega^{r}\left(f,\left|\mathscr{\mathscr { j }}_{j}\right|, \mathscr{\mathscr { j }}_{j}\right)_{\infty}\left(\psi_{j}(x)\right)^{\mu}
\end{aligned}
$$

implies

$$
\left|\bar{P}_{1}(x)-\bar{P}_{2}(x)\right| \leqslant C(r, \mu, s) \omega_{\varphi}^{m}\left(f, n^{-1}\right)_{\infty}
$$

and

$$
\left|\bar{P}_{1}(x)-\bar{P}_{2}(x)\right| \leqslant C(r, \mu, s) \omega^{m}\left(f, \Delta_{n}(x)\right)_{\infty} .
$$

Similar inequalities hold for $\left|P_{1}(x)-P_{2}(x)\right|$, and therefore, also for $\left|\bar{P}_{1}(x)-f(x)\right|$ and $\left|f(x)-P_{2}(x)\right|$. It is easy to see $\left\{\bar{P}_{1}, P_{2}\right\}$ is the desired almost intertwining pair of polynomials for f.

The proof of the following theorem is similar and thus will be omitted.
Theorem 14. Let $f \in \mathbf{L}_{p}[-1,1], 1 \leqslant p<\infty, m>0$, and Y_{s} be given. Then

$$
\tilde{E}_{n}\left(f, \operatorname{alm} Y_{s}\right)_{p} \leqslant C \tau^{m}\left(f, n^{-1}\right)_{p} .
$$

If f also belong to $\mathbf{W}_{p}^{1}[-1,1]$, then

$$
\tilde{E}_{n}\left(f, \operatorname{alm} Y_{s}\right)_{p} \leqslant C n^{-1} \omega_{\varphi}^{m}\left(f^{\prime}, n^{-1}\right)_{p} .
$$

6.2. Nearly Intertwining Approximation

In the rest of the paper, we show that the rate of nearly intertwining approximation can not be expressed in terms of τ - and ω-moduli of f, nor in terms of $\|f\|_{p}$, even if f is infinitely continuously differentiable (Theorem 15), which is no improvement over the ordinary intertwining approximation. This is because, probably, we still require $P-f$ and $f-Q$ change sign simultaneously at each \tilde{y}_{j}. If the first derivative of f is used in the bound, however, it has the optimal rate as unconstrained approximation (Theorem 17).

Theorem 15. For every $n \in \mathscr{N}, 0<p \leqslant \infty$, and $A>0$, there exists a function $f \in C^{\infty}[-1,1]$ such that for every $\tilde{y} \in[-1,1]$ and every pair of polynomials P and $Q \in \mathbf{P}_{n}$ with $P-f \in \Delta^{0}\left(\widetilde{Y}_{1}\right)$ and $f-Q \in \Delta^{0}\left(\widetilde{Y}_{1}\right)$, where $\widetilde{Y}_{1}:=\{\tilde{y}\}$, the following inequality holds:

$$
\begin{equation*}
\|P-Q\|_{p}>A \max \left\{\|f\|_{p}, \tau(f, 1)_{p}\right\} . \tag{6.1}
\end{equation*}
$$

Proof. Let $n \in \mathcal{N}, 0<p \leqslant \infty$, and $A>0$ be fixed, and define

$$
f(x):=\sin (b x),
$$

where b is a large positive number to be chosen later. Suppose that $\tilde{y} \in[0,1]$ (if $\tilde{y} \in[-1,0)$, then considerations are similar). If $\tilde{y} \in[2 k(\pi / b),(2 k+1) \pi / b]$ for some $k \in \mathscr{Z}$, we have $P(\tilde{y})=f(\tilde{y}) \geqslant 0$ and $P((2 k-1 / 2) \pi / b) \leqslant$ $f((2 k-1 / 2) \pi / b)=-1$, and, therefore, $\exists \xi \in((2 k-1 / 2) \pi / b, \tilde{y})$ such that

$$
\left|P^{\prime}(\xi)\right|>\frac{2 b}{3 \pi} .
$$

Similarly, if $\tilde{y} \in((2 k+1) \pi / b,(2 k+2) \pi / b]$, then $Q(\tilde{y})=f(\tilde{y}) \leqslant 0$ and $Q((2 k+1 / 2) \pi / b) \geqslant f((2 k+1 / 2) \pi / b)=1$, and, thus, $\exists \xi \in((2 k+1 / 2) \pi / b, \tilde{y})$ such that

$$
\left|Q^{\prime}(\xi)\right|>\frac{2 b}{3 \pi}
$$

This implies that

$$
\left\|P^{\prime}\right\|_{\infty}+\left\|Q^{\prime}\right\|_{\infty} \geqslant \frac{2 b}{3 \pi} .
$$

Suppose now that P and Q satisfy the inequality

$$
\|P-Q\|_{p} \leqslant A \max \left\{\|f\|_{p}, \tau(f, 1)_{p}\right\} .
$$

Taking into account that $\|f\|_{p} \leqslant 2^{1 / p}$ and $\tau(f, 1)_{p} \leqslant 2^{1+1 / p}$ we have the following estimates

$$
\begin{aligned}
\frac{2 b}{3 \pi} & \leqslant\left\|P^{\prime}\right\|_{\infty}+\left\|Q^{\prime}\right\|_{\infty} \leqslant n^{2}\left(\|P\|_{\infty}+\|Q\|_{\infty}\right) \\
& \leqslant M\left(\|P\|_{p}+\|Q\|_{p}\right) \leqslant M\left(\|P-f\|_{p}+\|Q-f\|_{p}+2\|f\|_{p}\right) \\
& \leqslant 2 M\left(\|P-Q\|_{p}+\|f\|_{p}\right) \leqslant 2^{2+1 / p} M(A+1),
\end{aligned}
$$

where the constant M depends on n and p but not on b. Choosing $b>3 \cdot 2^{1+1 / p} \pi M(A+1)$ gives the desired contradiction.

The key to the proof of Theorem 17 is the lemma below. The proof of the theorem itself is then somehow standard (see the proofs of Theorems 4 and 12) and thus will be omitted.

Lemma 16. Let $f \in \mathbf{W}_{p}^{1}[-1,1]$, and let $I:=[a, b]$ and $\tilde{I} \subseteq I$ be two subintervals of $[-1,1]$. Then there exist $y_{1} \in \tilde{I}$ and two polynomials p_{1} and p_{2} of degree $m \geqslant 1$ such that $\left\{p_{1}, p_{2}\right\}$ is an intertwining pair for f on I with respect to $Y_{1}:=\left\{y_{1}\right\}$ that satisfies

$$
\begin{equation*}
\left\|p_{1}-p_{2}\right\|_{L_{p}(I)} \leqslant C|I| \omega^{m}\left(f^{\prime},|I|, I\right)_{p} \tag{6.2}
\end{equation*}
$$

where C depends on m and the ratio $|I| /|I \widetilde{I}|$.
Proof. It is well-known that for any integrable function g on $(-\infty, \infty)$,

$$
|\{x: M g(x)>t\}| \leqslant c t^{-1} \int_{-\infty}^{\infty}|g|, \quad t>0
$$

where $M g(x):=\sup _{J \ni x}|J|^{-1} \int_{J}|g|$ is the Hardy-Littlewood maximal operator. Let

$$
F(x):= \begin{cases}f(a), & x<a \\ f(x), & x \in[a, b] \\ f(b), & x>b,\end{cases}
$$

and $t=2 c|\widetilde{I}|^{-1} \int_{I}\left|f^{\prime}\right|$, and apply the maximal operator to F^{\prime}, we have

$$
\left|\left\{x: M\left(F^{\prime}\right)(x)>t\right\}\right| \leqslant c t^{-1} \int_{-\infty}^{\infty}\left|F^{\prime}\right|=c t^{-1} \int_{I}\left|F^{\prime}\right|=c t^{-1} \int_{I}\left|f^{\prime}\right|=\frac{1}{2}|\widetilde{I}| .
$$

Thus there exists $y_{1} \in \tilde{I}$ such that $M\left(F^{\prime}\right)\left(y_{1}\right) \leqslant t$. Let $l_{1}(x)=f\left(y_{1}\right)+t\left(x-y_{1}\right)$ and $l_{2}(x)=f\left(y_{1}\right)-t\left(x-y_{1}\right)$, then they form a intertwining pair of f on I with respect to $Y_{1}=\left\{y_{1}\right\}$. This is because we have, for $l_{1}(x), y_{1} \leqslant x \leqslant b$, for example,

$$
\begin{aligned}
l_{1}(x) & =f\left(y_{1}\right)+t\left(x-y_{1}\right) \geqslant f\left(y_{1}\right)+\left(x-y_{1}\right) M\left(F^{\prime}\right)\left(y_{1}\right) \\
& \geqslant f\left(y_{1}\right)+\int_{y_{1}}^{x}\left|F^{\prime}\right|=f\left(y_{1}\right)+\int_{y_{1}}^{x}\left|f^{\prime}\right| \geqslant f(x) .
\end{aligned}
$$

For an error estimate of l_{1} and l_{2}, we first note for $\forall x \in I$,

$$
\begin{aligned}
\left|l_{1}(x)-l_{2}(x)\right| & =2 t\left|x-y_{1}\right|=4 c|\widetilde{I}|^{-1}\left|x-y_{1}\right| \int_{I}\left|f^{\prime}\right| \leqslant C \int_{I}\left|f^{\prime}\right| \\
& \leqslant C|I|^{1 / q}\left\|f^{\prime}\right\|_{L_{p}(I)},
\end{aligned}
$$

where $1 / p+1 / q=1$. It follows that

$$
\begin{equation*}
\left\|l_{1}-l_{2}\right\|_{L_{p}(I)} \leqslant C|I|\left\|f^{\prime}\right\|_{L_{p}(I)} \tag{6.3}
\end{equation*}
$$

Let P^{\prime} be a best polynomial approximation to f^{\prime} on I of degree $m-1$, and $P:=\int_{a}^{x} P^{\prime}(t) d t$. To prove (6.2), we apply (6.3) to $f-P$, then $\left\{l_{1}, l_{2}\right\}$ is an intertwining pair for $f-P$. Define $p_{i}:=l_{i}+P, i=1,2$. Obviously $\left\{p_{1}, p_{2}\right\}$ is an intertwining pair of polynomials of degree m for f on I with

$$
\left\|p_{1}-p_{2}\right\|_{L_{p}(I)}=\left\|l_{1}-l_{2}\right\|_{L_{p}(I)} \leqslant C|I|\left\|f^{\prime}-P^{\prime}\right\|_{L_{p}(I)} \leqslant C|I| \omega^{m}\left(f^{\prime},|I|, I\right)_{p},
$$

where Whitney's Theorem has been used.
Theorem 17. Suppose $f \in \mathbf{W}_{p}^{1}[-1,1], k>0$ and $n>m>0$.
(i) If \mathbf{T}_{k} is a single-knot sequence, with auxiliary knots added as before Lemma 3, that has at least $2(r-1)^{2}+1$ knots in each of $\left(y_{j-1}, y_{j}\right)$, $j=2, \ldots, s$, then there exists a nearly intertwining pair $\left\{S_{1}, S_{2}\right\}$ of splines of order $m+1$ on \mathbf{T}_{k} for f with respect to Y_{s} satisfying

$$
\begin{equation*}
\left\|S_{1}-S_{2}\right\|_{p} \leqslant C \Delta \mathbf{T}_{k} \omega^{m}\left(f^{\prime}, \Delta \mathbf{T}_{k}\right)_{p} \tag{6.4}
\end{equation*}
$$

where C depends on m and on ratios $\Delta t_{i} / \Delta t_{i+1}$ of lengths of neighboring subintervals I_{i} and I_{i+1}. It also depends on ratios $\Delta t_{i} / \Delta_{n}\left(y_{j}\right)$ if $y_{j} \in I_{i}$ and $\Delta_{n}\left(y_{j}\right) \ll \Delta t_{i}=\left|I_{i}\right|$.
(ii) There exists a nearly intertwining pair $\left\{P_{1}, P_{2}\right\}$ of polynomials of degree $C_{1} n$ for f with respect to Y_{2} satisfying

$$
\begin{equation*}
\left\|P_{1}-P_{2}\right\|_{p} \leqslant C n^{-1} \omega_{\varphi}^{m}\left(f^{\prime}, n^{-1}\right)_{p}, \tag{6.5}
\end{equation*}
$$

where C_{1} depends only on m while C depends on m and Y_{s}.

REFERENCES

1. R. K. Beatson, Restricted range approximation by splines and variational inequalities, SIAM J. Number. Anal. 19 (1982), 372-380.
2. C. de Boor, "Practical Guide to Splines," Springer-Verlag, New York, 1987.
3. R. A. DeVore, Y. K. Hu, and D. Leviatan, Convex polynomial and spline approximation in $\mathbf{L}_{p}, 0<p<\infty$, Constr. Approx. 12 (1966), 409-422.
4. R. A. DeVore, D. Leviatan, and X. M. Yu, Polynomial approximation in $L_{p}(0<p<1)$ space, Constr. Approx. 8 (1992), 187-201.
5. R. A. DeVore and G. G. Lorentz, "Constructive Approximation," Springer-Verlag, Berlin, 1993.
6. R. A. DeVore and V. A. Popov, Interpolation of Besov spaces, Trans. Amer. Math. Soc. 305 (1988), 397-414.
7. J. Gilewicz and I. A. Shevchuk, Comonotone approximation, Fundamentalnaya i prikladnaya matematika 2 (1996), 319-363. [in Russian]
8. Y. K. Hu, Positive and copositive spline approximation in $\mathbf{L}_{p}[0,1]$, Comput. Math. Appl. 30 (1995), 137-146.
9. Y. K. Hu, K. Kopotun, and X. M. Yu, On positive and copositive polynomial and spline approximation in $\mathbf{L}_{p}[-1,1], 0<p<\infty$, J. Approx. Theory 86 (1996), 320-334.
10. Y. K. Hu, K. Kopotun, and X. M. Yu, Constrained approximation in Sobolev spaces, Canad. J. Math. 49 (1997), 74-99.
11. Y. K. Hu, D. Leviatan, and X. M. Yu, Copositive polynomial approximation in C[0, 1], J. Anal. 1 (1993), 85-90.
12. Y. K. Hu, D. Leviatan, and X. M. Yu, Copositive polynomial and spline approximation, J. Approx. Theory 80 (1995), 204-218.
13. Y. K. Hu and X. M. Yu, The degree of copositive approximation and a computer algorithm, SIAM J. Num. Anal. 33 (1996), 388-398.
14. K. A. Kopotun, Uniform estimates of convex approximation of functions by polynomials, Mat. Zametki 51 (1992), 35-46 [in Russian]; English translation: Math. Notes 51 (1992), 245-254.
15. K. A. Kopotun, Pointwise and uniform estimates for convex approximation of functions by algebraic polynomials, Constr. Approx. 10 (1994), 153-178.
16. K. A. Kopotun, A note on simultaneous approximation in $L_{p}[-1,1](1 \leqslant p<\infty)$, Analysis 15 (1995), 151-158.
17. K. A. Kopotun, On copositive approximation by algebraic polynomials, Anal. Math. 21 (1995), 269-283.
18. D. Leviatan, The degree of copositive approximation by polynomials, Proc. Amer. Math. Soc. 88 (1983), 101-105.
19. D. Leviatan and H. N. Mhaskar, The rate of monotone spline approximation in the L $_{p}$-norm, SIAM J. Math. Anal. 13 (1982), 866-874.
20. D. Leviatan and I. A. Shevchuk, Nearly comonotone approximation, J. Approx. Theory, to appear.
21. L. L. Schumaker, "Spline Functions: Basic Theory," Wiley, New York, 1981.
22. M. Stojanova, The best onesided algebraic approximation in $\mathbf{L}_{p}[-1,1](1 \leqslant p \leqslant \infty)$, Math. Balkanica (N.S.) 2 (1988), 101-113.
23. S. P. Zhou, On copositive approximation, Approx. Theory Appl. 9 (1993), 104-110.
